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Wave-beam coupling in quadratic nonlinear optical waveguides:
Effects of nonlinearly induced diffraction
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Beam coupling influenced by nonlinearly induced diffraction, an effect stemming from the divEW -term in the
wave equations, is stressed in the study. The system considered consists of two beams carried by TE-modes at
frequencies ofv and 2v in quadratic nonlinear planar optical waveguides. The power-conservation law, the
Lagrangian and the Hamiltonian of the system, as well as the equations governing its stationary states are
derived. It is shown that the nonlinearly induced diffraction modifies the second-order nonlinear terms and acts
as an effective third-order nonlinearity. The procedure for dealing with modifications caused by effects like the
nonlinearly induced diffraction within the framework of a paraxial approach is discussed. The numerical
analysis carried out has the nonlinear wave-number shift and the linear phase mismatch as parameters. The
influence of the nonlinearly induced diffraction on the shape~the amplitude and the width! of the solitary
waves is demonstrated.

PACS number~s!: 42.65.Wi, 42.65.Jx, 42.82.Et, 42.82.2m
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I. INTRODUCTION

The second-order nonlinear effects and nonlinear ene
exchange in nonlinear wave interactions at fundamental
second-harmonic frequencies have been a subject of in
sive study since the beginning of the research in nonlin
optics. The solitonlike waves in second-order nonlinear m
dia predicted in 1974@1# form nowadays a tremendous
enlarged field called cascaded nonlinearities@2,3#. The
higher efficiency of the second-order nonlinear proces
compared to those related to third-order nonlinearity justi
their consideration as effects of great importance for ap
cations to all-optical switching. Solitonlike wave formatio
in both self-phase modulation and self-focusing have b
covered by many studies~see, e.g., Refs.@4–14#!. A new
family of soliton solutions have been found in cascaded n
linearities, stability analysis have been performed in differ
dimensions and problems concerning soliton interactions
soliton formation in the presence of both second- and th
order nonlinearities have been treated.

This study stresses the modifications of the beam coup
in quadratic optically-nonlinear media which are related
the divEW term in the wave equations, a term which intr
duces effects due to spatial inhomogeneity of the nonlin
polarization. Although quite often neglected in nonlinear o
tics, such effects have been treated before in studies bot
temporal@15,16# and spatial@17–19# solitary waves in Kerr-
type nonlinear media. With respect to beam propagation
third-order nonlinear optical waveguides, the rate of the s
tial variation of the nonlinear polarization shows up as
nonlinearly induced diffraction@20#. Modifying the nonlin-
ear Schro¨dinger equation~by changing the cubic nonlinea

*Also at Faculty of Physics, Sofia University, BG-1164 Sofi
Bulgaria.
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term in it and inducing an effective fifth-order nonlinearit!
it leads to a new type of solitary waves. In a way, the no
linearly induced diffraction appears as a factor which p
tially controls the balance between the linear diffraction
the beam and the nonlinearity of the media. Here, in q
dratically nonlinear optical waveguides, the nonlinearly
duced diffraction modifies the second-order nonlinear ter
in the coupled beam equations and introduces an effec
third-order nonlinearity in them. Therefore, it could strong
influence phenomena which are governed by simultane
action of second- and third-order nonlinearities. The non
early induced diffraction affects the energy distribution
the system of the two beams carried at the fundamentalv)
and second-harmonic (2v) frequencies and modifies its sta
tionary states. This is demonstrated by both the analyt
results derived here for the power of the two-beam syst
its Hamiltonian and Lagrangian, as well as the correspond
Euler-Lagrange equations, and the numerical analysis
formed for obtaining the shape and the parameters~ampli-
tudes and widths! of the solitary-wave stationary states. Th
procedure for the derivation of the coupled equations, wh
modifications caused by effects like the nonlinearly induc
diffraction are considered in the framework of the parax
approach, is also discussed.

II. COUPLED BEAM EVOLUTION EQUATIONS

Propagation of two beams@with field space dependenc
EW (x,y,z)# carried by TE modes@EW 5(EX,0,0)# at fundamen-
tal (v) and second-harmonic (2v) frequencies

Ev5 1
2 ~Ēve2 ivt1c.c.!, ~1a!

E2v5 1
2 ~Ē2ve22ivt1c.c.! ~1b!

along thez axis of a planar nonlinear optical waveguide
considered in a scalar approach. The extension of the be
is in thex direction and the guiding confinement is in they
direction. Waveguide medium with quadratic nonlinear

,
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within the 32 crystal class (b quartz! @21# is considered.
Therefore, the amplitudes at frequenciesv and 2v of the
second-order nonlinear polarization@PW NL

(2)5(PNL,0,0)# are

P̄NL
2v5

«0x (2)

2
Ēv

2 , ~2a!

P̄NL
v 5«0x (2)Ēv* Ē2v , ~2b!

where «0 is the vacuum permittivity, and x (2)

5xXXX
(2) (2v;v,v)5xXXX

(2) (v;2v,2v) is the second-orde
susceptibility.

In the wave equation

¹2EW 2¹W ~¹W •EW !5
«L

c2

]2EW

]t2
1m0

]2PW NL

]t2
~3!

the (¹W •EW ) term is kept and expressed throughPW NL by using

¹W •EW 52
1

«0«L
¹W •PW NL , ~4!

a relation which stems directly from¹W •DW 50 with DW

5«0«LEW 1PW NL . In Eqs.~3! and ~4!, «L is the linear dielec-
tric constant,m0 is the vacuum permeability,c is the light
speed in vacuum, andDW is the displacement.

The set of equations, obtained from Eqs.~1!–~4! for de-
scribing the coupled beam propagation, is

]2Ēv

]x2
1

]2Ēv

]z2
1

v2

c2
«L~v!Ēv1

v2

c2
x (2)Ēv* Ē2v

1
x (2)

«L~v!

]2~Ēv* Ē2v!

]x2
50, ~5a!

]2Ē2v

]x2
1

]2Ē2v

]z2
1

4v2

c2
«L~2v!Ē2v1

2v2

c2
x (2)Ēv

2

1
x (2)

2«L~2v!

]2Ēv
2

]x2
50. ~5b!

The last terms in Eqs.~5! come out from the (¹W •EW ) term in
Eq. ~3! and since their form is similar to that of the diffrac
tion terms@the first ones in Eq.~5!#, we call them nonlinearly
induced diffraction terms.

The transformation

Ēv5Ẽv exp~ ibvz!, ~6a!

Ē2v5Ẽ2v exp~ ib2vz! ~6b!

applied involves the total, nonlinear wave numbersbv5kv

1Dbv , b2v5k2v1Db2v ~where kv , k2v are the linear
wave numbers andDbv , Db2v are the nonlinear contribu
tions! and the convenient condition for synchronism

b2v52bv ~7!
is used for them. For balanced states, the linear mismatc
compensated by the mismatch of the nonlinear contributi
in which case the following condition holds exactly:

DkL[k2v22kv52Dbv2Db2v . ~8!

The transformation~6! should be rather used instead of tran
formation Ēv5Ẽv exp(ikvz), Ē2v5Ẽ2v exp(ik2vz) because
the latter is not commutative with the paraxial approxim
tion. In addition, the derivation of the power-conservati
law when the nonlinearly induced diffraction is taken in
account requires before going to the paraxial approach
have the total wave number taken into account.

After introducing notation a5k2v/2kv , B51
1(Dbv /kv) and making the transformations 2bvz

→z, 2bvx→x, gẼ2v→E2 , A2gẼv→E1 @where g5(v/
(2bvc))2x (2)#, Eqs.~5! take finally the form

i
]E1

]z
1

]2E1

]x2
1

12B2

4B2
E11E1* E214B2

]2~E1* E2!

]x2
50,

~9a!

2 i
]E2

]z
1

]2E2

]x2
1

a22B2

B2
E21E1

21
B2

a2

]2E1
2

]x2
50. ~9b!

In Eqs. ~9! the nonparaxial terms are neglected because
the amplitudesE1 , E2 there is no fast~linear and nonlinear!
phase changes. The constantsB221'2Dbv /kv and a2

21'DkL /kv are, respectively, twice the relative nonline
wave-number shift at the fundamental frequency and
relative mismatch. Therefore, the coefficients (B221)/4B2

and (B22a2)/B2 in the third terms of Eqs.~9a! and~9b! are
related to the relative nonlinear wave-number shift, resp
tively, of the fundamental and second-harmonic waves.

III. POWER-CONSERVATION LAW

The linear and nonlinear diffraction@i.e., the second and
the last terms in Eqs.~9!# are combined and Eqs.~9a! and
~9b! are multiplied, respectively, toE1* 14B2E1E2* andE2*
1(B2/a2)E1*

2. After some algebra, we obtain the conserv
tion law of the two-beam system:

dP/dz50, ~10a!

where

P5E
2`

`

@ uE1u212a2uE2u212B2~E1*
2E21E1

2E2* !#dx

~10b!

is the total power~or mass! carried by the beams. Wherea
the first two terms give the power carried separately by e
of the beams, the third term, which is the term stemm
from the nonlinearly induced diffraction, combines contrib
tions of the two beams. Through the nonlinearly induc
diffraction the nonlinear polarization is explicitly involved i
the conservation law of the beam system. The derivation
the power-conservation law~10! of the system is possible
since a proper consequence in making the transformat
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@separation of the phase variation according to~6! and then
applying the paraxial approach# has been chosen.

IV. HAMILTONIAN, LAGRANGIAN, AND
EULER-LAGRANGE EQUATIONS OF THE SYSTEM

The equations governing the stationary~solitonlike! solu-
tions obtained by dropping thez dependence in Eqs.~9! are

d2

dx2
~E114B2E1E2!2

B221

4B2
E11E1E250, ~11a!

d2

dx2 S E21
B2

a2
E1

2D 2
B22a2

B2
E21E1

250. ~11b!

After making the transformationE1,2/@(B221)/4B2#
→E1,2, x@(B221)/4B2#1/2→x, the set of the coupled equa
tions ~11! takes the form

d2

dx2
@E11~B221!E1E2#2E11E1E250, ~12a!

d2

dx2 FE21
B221

4a2
E1

2G24
B22a2

B221
E21E1

250, ~12b!

and can be integrated once to obtain the Hamiltonian

H5T1U, ~13a!

where

T5
1

2 FdE1

dx
1~B221!

d~E1E2!

dx G2

1
a2

4 FdE2

dx

1
B221

4a2

dE1
2

dx G 2

, ~13b!

FIG. 1. Comparison of the normalized amplitudesE1 and E2

@according to the notation in Eqs.~11!# of the beams at the funda
mental (v) and second-harmonic (2v) frequencies, marked, re
spectively, by~1! and ~2!, for a50.9 (DkL/2kv520.1) andB
51.03 (Dbv /kv50.03) and nonlinearly induced diffraction take
~in solid curves! and not taken~dashed curves! into account.
U52
1

2
E1

22a2
B22a2

B221
E2

21E1
2E2S 11

a2

2
2B2D

1
B221

2
~E1E2!21

B221

16
E1

4 ~13c!

are, respectively, the kinetic and potential energies of

FIG. 2. Comparison of the changes of the normalized to
powerP of the two-beam system with variation of the dimensio
less nonlinear wave-number shiftB511(Dbv /kv) with ~solid
squares, NLD! and without~open circles, standard! nonlinearly in-
duced diffraction taken into account ata5k2v/2kv[1
1(DkL/2kv) equal to~a! 0.7, ~b! 0.9, and~c! 1.
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FIG. 3. Comparison of the solitonlike beam properties and their variation with the normalized total powerP of the system~for a
50.9) without~open circles, standard! and with~solid squares, NLD! nonlinearly induced diffraction taken into account: dimensionless
widths L1 andL2 ~at the half-maximum! in ~a! and ~c! and normalized beam amplitudesE1(x50) andE2(x50) in ~b! and ~d!, respec-
tively, at the fundamental~index ‘‘1’’ ! and second-harmonic~index ‘‘2’’ ! frequencies.
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two-beam system. Therefore, Eqs.~12! are equivalent of par-
ticle motion in a two-dimensional potentialU5U(E1 ,E2).
Comparison with the HamiltonianH85T81U8 @where
T85@(dE1 /dx)2/2#1@(dE2 /dx)2/4# and U852(E1

2/2)
2@(B22a2)/(B221)#E2

21(E1
2E2/2) are the kinetic and po

tential energies of the two beam system when the nonline
induced diffraction is not taken into account@10##, shows the
influence of the latter on the energy of the system. Introd
ing the paraxial approximation at a wrong stage does
ensure possibility of obtaining the Hamiltonian of the sy
tem.

The Lagrangian is

L5T2U, ~14!

whereT andU are, as given by expressions~13b! and~13c!.
According to Eqs.~11!, existence of bound states~at x

→`) requiresB2.1 and B2.a2. The first inequality is
equivalent toDbv.0 and the second one being equivale
to 2Dbv.DkL[k2v22kv put a condition for a threshold
power which should be ensured in order to have the lin
mismatch compensated by the nonlinear wave-number
in the case ofk2v.2kv .

Assuming considerations close to exact synchronism s
plifies the Lagrangian of the system and the drawing of c
ly

-
ot
-

t

r
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-
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clusions about the effects associated with the inhomogen
of the nonlinear polarization and its rate of spatial variati
~i.e., about the effects related to the nonlinearly induced
fraction!.

The transformations

FIG. 4. Comparison of the dependence of the normalized t
power of the systemP on a511(DkL/2kv) at the soliton threshold
(B5a10.0001) with ~solid squares, NLD! and without ~open
circles, standard! nonlinearly induced diffraction taken into ac
count.
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w5E11~B221!E1E2 , ~15a!

v5E21
B221

4a2
E1

2 ~15b!

introduce the displacementsw andv at the fundamental and
second-harmonic frequencies, respectively. The sec
terms in the right-hand side of expressions~15! are contribu-
tions coming out from the nonlinear polarization which a
involved owing to the nonlinearly induced diffraction. B
taking them as correction terms, a perturbation procedur
expressingE1,2 throughw andv can be developed:

E1'w2~B221!wv, ~16a!

E2'v2
B221

4a2
w2. ~16b!

Therefore, the Lagrangian~14! of the system expressed i
terms ofw andv is

L5
1

2 H S dw

dx D 2

1
a2

2 S dv
dxD

2

1w212a2
B22a2

B221
v22B2w2vJ

1
1

2 H B221

8
w41~2a221!~B221!w2v2J . ~17!

Comparison with the corresponding expression

L85~1/2!$~dw8/dx!21@~dv8/dx!2/2#1w82

12@~B22a2!/~B221!#v822w82v8%

~with w85E1 , v85E2) obtained without taking into accoun
the nonlinearly induced diffraction shows that the introdu
tion of the latter gives a new meaning ofw and v and
changes the coefficients of some of the terms in addition
introducing correction terms@the last two terms in expres
sion ~15!#. The Euler–Lagrange equations corresponding
the Lagrangian~17! is

d2w

dx2
2w1B2wv2

B221

4
w32~2a221!~B221!wv250,

~18a!

d2v

dx2
24

B22a2

B221
v1

B2

a2
w22

2

a2
~2a221!~B221!w2v50.

~18b!

The nonlinearly induced diffraction involvesB2 and (B/a)2

as coefficients in the third terms in Eqs.~18a! and~18b! and
introduces new terms@the last two in~18a! and the last one
in ~18b!# in the Euler–Lagrange equations of the syste
These new terms show that the nonlinearly induced diffr
tion has a meaning of an effective third-order~defocusing!
nonlinearity. Besides, in the equation for the fundamen
wave this effective third-order nonlinearity acts both throu
self- and cross-phase modulation whereas for the sec
harmonic wave its action is only through cross-phase mo
lation. Therefore, the nonlinearly induced diffraction cou
nd

in

-

to

o

.
-

l

d-
u-

strongly influence phenomena which are associated with
multaneous action of second- and third-order nonlinearit
When self-phase and cross-phase modulation due to th
order nonlinearity is taken into account together with t
second-order nonlinearity, terms of the formm(B2

FIG. 5. Comparison~at phase match,a51) of the solutions of
the set of Eqs.~11! ~exact solutions! with the solutions of the ap-
proximate equations~18! ~model!. The solutions~standard! in
which the nonlinearly induced diffraction is ignored are also show
In ~a!, total powerP of the system vsB511(Dbv /kv) obtained
from Eqs. ~11! ~solid diamonds, exact!, and ~18! ~open circles,
model!; the solid line represents the solution when the nonlinea
induced diffraction is ignored. Normalized amplitudesE1(x50),
E2(x50) @according to the notation in Eqs.~12!# and dimension-
less full widthsL1 and L2 ~at half-maximum! of the two beams,
respectively, in~b! and ~c! with notation as specified in~b!.
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21)@(w2/4)1v2#w and 2m(B221)(w21v2)v, should be
added to the left-hand sides of Eqs.~18a! and~18b!, respec-
tively. Herem5(3/2)x (3)«L(v)/(x (2))2 andx (3) is the third-
order susceptibility. Therefore, the effects of the nonlinea
induced diffraction predominate over those of Kerr-type no
linearly for m,1.

It is worth noting that Eqs.~18! obtained here in the cas
of nonlinearly induced diffraction taken into account are
the same type as the equations which describe the so
like solutions in quasi-phase-matched quadratic me
@22,23#.

V. NUMERICAL ANALYSIS

The set~11! is solved by using an algorithm involving th
shooting technique@24#. Since equationU(E1 ,E2)x5050
relates the amplitudes of the interacting beams atx50, one
of the unknown boundary conditions atx50 drops off and,
therefore, there is one ‘‘shooting’’ parameter left. A soluti
of the set of Eqs.~11! describing the shape of a couple
two-beam solitonlike state at givenB- and a-values is pre-
sented in Fig. 1. The role of the nonlinearly induced diffra
tion is to decrease the amplitudes of the beams and to
crease their width. This agrees with the interpretation of
nonlinearly induced diffraction as a defocusing effect.

The dependence of the total power of the system@P, re-
lation ~10b!# on the nonlinear wave-number shift at differe
a values is presented in Fig. 2. The solution without nonl
early induced diffraction is denoted as ‘‘standard.’’ The no
linearly induced diffraction requires higher power for ens
ing a given value of the nonlinear wave-number sh
Increasing mismatch~i.e., larger deviation ofa from unity!
leads to increased power for a given value of the nonlin
wave-number shift. The lowest value of the power is at ph
match@Fig. 2~c!#. At different a values, the relative change
of the power caused by the nonlinearly induced diffract
are almost the same.

The effects associated with the nonlinearly induced d
fraction are shown in more details in Fig. 3. The full widt
L1 , L2 ~at half-maximum amplitudes! and the amplitudes
E1 , E2 of the coupled solitonlike beams at the fundamen
and second-harmonic frequencies~denoted, respectively, b
indices ‘‘1’’ and ‘‘2’’ ! and their variation with the tota
power P of the system~respectively, with the nonlinea
wave-number shift! are depicted. Since the effect is nonli
ear, its influence~in increasing the beam widths and decre
ing their amplitudes! increases with increasing power.

Therefore, the nonlinearly induced diffraction influenc
the total behavior of the coupled beam system by introduc
le

a
ev
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-

f
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-
n-
e

-
-
-
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r
e

-

l

-

g

changes of the shapes and the power of the solitonlike st
of the system~Figs. 1–3!. Its effect depends on the deviatio
of 2Dbv from DkL and it is the weakest at the thresho
(2Dbv5DkL , respectively,B5a!. The latter is shown in
Fig. 4 where conditions close to threshold for a formation
spatial solitons are simulated.

Figure 5, where numerical solutions of the coupled eq
tions taken in their exact@Eqs. ~11!# and approximate@Eqs.
~18!# forms are compared, show that at comparatively sm
values of the nonlinear wave-number shift the results of
approximate description@Eqs.~18!# coincides with that given
by the exact one. This figure also stresses on the effect o
nonlinearly induced diffraction on the beam properties~total
power of the system and amplitudes and widths of
beams!. The deviations of the solutions of Eqs.~11! and~18!,
which account for the nonlinearly induced diffraction, fro
the solution of the corresponding set of equations in whic
is ignored, strongly increases with the increase of the n
linear wave-number shift.

VI. CONCLUSIONS

In conclusion, the nonlinearly induced diffraction stem
ming from the divEW term in the wave equation acts on th
solitonlike states of a two-beam system at fundamental
second-harmonic frequencies as an effective third-order n
linearity. With respect to the beam properties at the fun
mental frequency this is an effect of both self- and cro
phase modulation whereas at the second-harmonic frequ
the nonlinearly induced diffraction acts only through cros
phase modulation. Without influencing the threshold pow
value, the nonlinearly induced diffraction leads to changes
the properties of the solitons: Widening of their shape
companied with a decrease of the beam amplitudes.
though the involvement of the nonlinearly induced diffra
tion complicates the investigation of the two-beam coup
system, derivation of the power-conservation law and gett
results for the Lagrangian and the Hamiltonian of the syst
is still possible if a proper analytical procedure is appli
with respect to the stage at which the paraxial approac
made. The nonlinearly induced diffraction could be very im
portant for processes which go simultaneously throu
second- and third-order nonlinearities.
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